miércoles, 7 de octubre de 2009

PESO ESPECIFICO

Se denomina peso específico de un mineral al cociente entre su peso y el peso de un volumen equivalente de agua a 4ºC (condiciones de máxima densidad del agua), siendo un valor adimensional. Por el contrario, la densidad relativa es un valor equivalente correspondiente a la masa por unidad de volumen y viene expresado en unidades tales como g/cm3.
El peso específico es una propiedad intrínseca y constante para un mineral de composición química determinada y depende basicamente de dos factores:
De los átomos que constituyen el mineral.
Del tipo de empaquetamiento de los átomos.

Pesos específicos de algunos minerales
La estimación del valor del peso específico es en muchas ocasiones determinante el la clasificación de un mineral a estudiar, por ello a continuación se especifica diho valor para algunos minerales:




Hematites-5,20 - 5,26

Circón-4,67 - 4,73

Esfalerita-3,90 - 4,10



Medidas del peso específico
Los métodos de medida del peso específico se basan en el principio de Arquímedes y consisten en medir el peso en aire del mineral P y posteriormente el peso de dicho mineral sumergido en agua P(agua). A continuación se presenta un esquema de una balanza hidrostática clásica.

Densidad

La densidad puede obtenerse de varias formas. Por ejemplo, para objetos macizos de densidad mayor que el agua, se determina primero su masa en una balanza, y después su volumen; éste se puede calcular a través del cálculo si el objeto tiene forma geométrica, o sumergiéndolo en un recipiente calibrando, con agua, y viendo la diferencia de altura que alcanza el líquido. La densidad es el res


ultado de dividir la masa por el volumen. Para medir la densidad de líquidos se utiliza el densímetro, que proporciona una lectura directa de la densidad.
El término de densidad también se aplica a las siguientes magnitudes:
La relación entre el número de partículas en un volumen dado, o el total de una determinada cantidad
2) La energía luminosa por unidad de volumen (densidad de energía luminosa).
3) La oscuridad de una imagen en una película o placa fotográfica (densidad fotográfica).
Peso Específico.- El peso específico de una sustancia es el peso de la unidad de volumen.
Se obtiene dividiendo un peso conocido de la sustancia entre el volumen que ocupa.
Llamando p al peso y v al volumen, el peso específico,


Sistema Internacional.
La unidad de peso específico es el N/m3; es decir, el newton (Unidad de fuerza y, por tanto, de peso) entre el m3 (Unidad de volumen).
Sistema Técnico.
Se emplean el kp/m3 y el kp/dm3.
Sistema Cegesimal.
Se utilizaría la dina/cm3, que corresponde a la unidad del sistema internacional












Principio de Acción y Reacción


3º) Principio de Acción y Reacción:


Si un cuerpo actúa sobre otro con una fuerza (acción), éste reacciona contra aquél con otra fuerza de igual valor y dirección, pero de sentido contrario (reacción).


Principio Fundamental de la Dinámica de Traslación

El cambio de movimiento (cantidad de movimiento) es proporcional a la fuerza motriz que se le ha impreso, y sigue en la dirección de la línea recta en que se le imprimió la fuerza. O lo que es lo mismo, la fuerza que actúa sobre un cuerpo es igual a la derivada,respecto al tiempo, de su momento lineal. Si se modifica la velocidad de un cuerpo (modelado como una partícula) por la acción de una fuerza externa (ya sea en cualquiera de sus características vectoriales: valor, dirección y/o sentido), se modifica, en consecuencia, su momento lineal. Esta variación no es inmediata, sino que lleva instantes diferenciales de tiempo.
Si sobre un cuerpo actúa una fuerza, o varias (cuya resultante no sea nula), adquiere una aceleración con valor directamente proporcional al de la fuerza aplicada e inversamente proporcional a la masa del cuerpo

Principio de inercia (Primera ley de Newton)

Todo cuerpo continúa en su estado de reposo (es decir, velocidad nula) o de movimiento uniforme en línea recta a menos que sea forzado a cambiar su estado por fuerzas externas.
Es decir, que a no ser que la partícula expiremente un cambio debido a una fuerza externa (véase rozamiento, fricción, impulso, tirón…) ésta seguirá con la velocidad que llevara de forma constante. De esta forma podemos distinguir varios casos:
-Caso 1) Si disponemos de una partícula parada al inicio, a no ser que se le empuje (por ejemplo), ésta no se moverá nunca.
-Caso 2) Si a un partícula (por ejemplo un patinador sobre el hielo -modelo de un sistema sin rozamiento-) con velocidad incial disinta de cero, no se le obliga a frenar con fuerzas de fricción o con un tope, ésta conservará la velocidad que llevaba de forma constante por tiempo infinito.
-Caso 3) Por úlimo contemplaremos el caso de una partícula (de nuevo podría ser el patinador) que se desplaza a velocidad constante. Ésta viajará siempre en línea recta a no ser que una fuerza externa (por ejemplo, un empujón) la obligue a girar y cambiar su ritmo.
Pero, como es obvio, en nuestra naturaleza el caso 2 es muy difícil de concebir, puesto que no disponemos de sistemas sin rozamiento. Para estudiar este fenómeno usamos modelos simulados sobre hielo, que resbalan minimizando el roce con la superficie; o elevaciones bien con aire a presión, bien con electromagnetismo, para eliminar la fricción. Éste último es el caso del ‘Transrapid’, un tren alemán que funciona en Shangai sobre raíles magnéticos aprovechando la repulsión de polos iguales para elevar el tren y eliminar el posible roce.

Isaac Newton

Sir Isaac Newton, (4 de enero, 1643 NS31 de marzo, 1727 NS) fue un físico, filósofo, inventor, alquimista y matemático inglés, autor de los Philosophiae naturalis principia mathematica, más conocidos como los Principia, donde describió la ley de gravitación universal y estableció las bases de la Mecánica Clásica mediante las leyes que llevan su nombre. Entre sus otros descubrimientos científicos destacan los trabajos sobre la naturaleza de la luz y la óptica (que se presentan principalmente en el Optica) y el desarrollo del cálculo matemático.
Newton fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Es, a menudo, calificado como el científico más grande de todos los tiempos, y su obra como la culminación de la Revolución científica.
Entre sus hallazgos científicos se encuentran los siguientes: el descubrimiento de que el espectro de color que se observa cuando la luz blanca pasa por un prisma es inherente a esa luz, en lugar de provenir del prisma (como había sido postulado por Roger Bacon en el siglo XIII); su argumentación sobre la posibilidad de que la luz estuviera compuesta por partículas; su desarrollo de una ley de conducción térmica, que describe la tasa de enfriamiento de los objetos expuestos al aire; sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de las estrellas.
Newton comparte con Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio. El matemático y físico matemático Joseph Louis Lagrange (1736–1813), dijo que "Newton fue el más grande genio que ha existido y también el más afortunado dado que sólo se puede encontrar una vez un sistema que rija el mundo."Sir Isaac Newton, (4 de enero, 1643 NS31 de marzo, 1727 NS) fue un físico, filósofo, inventor, alquimista y matemático inglés, autor de los Philosophiae naturalis principia mathematica, más conocidos como los Principia, donde describió la ley de gravitación universal y estableció las bases de la Mecánica Clásica mediante las leyes que llevan su nombre. Entre sus otros descubrimientos científicos destacan los trabajos sobre la naturaleza de la luz y la óptica (que se presentan principalmente en el Optica) y el desarrollo del cálculo matemático.
Newton fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Es, a menudo, calificado como el científico más grande de todos los tiempos, y su obra como la culminación de la Revolución científica.
Entre sus hallazgos científicos se encuentran los siguientes: el descubrimiento de que el espectro de color que se observa cuando la luz blanca pasa por un prisma es inherente a esa luz, en lugar de provenir del prisma (como había sido postulado por Roger Bacon en el siglo XIII); su argumentación sobre la posibilidad de que la luz estuviera compuesta por partículas; su desarrollo de una ley de conducción térmica, que describe la tasa de enfriamiento de los objetos expuestos al aire; sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de las estrellas.
Newton comparte con Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio. El matemático y físico matemático Joseph Louis Lagrange (1736–1813), dijo que "Newton fue el más grande genio que ha existido y también el más afortunado dado que sólo se puede encontrar una vez un sistema que rija el mundo."


miércoles, 19 de agosto de 2009

Estatica

Se denomina cupla o par de fuerzas a un sistema formado por dos fuerzas de igual valor que poseen direcciones opuestas.
Dicho sistema de fuerzas NO puede ser reducido a una única fuerza resultante.
El efecto que produce, o tiende a producir, una cupla sobre un cuerpo es una rotación pura.
El plano en el cual se encuentran las dos fuerzas se denomina plano de la cupla y la distancia entre las líneas de acción de las fuerzas se denomina brazo de la cupla.


La fuerza es una magnitud física que sirve para explicar las interacciones entre cuerpos.
Los efectos de las interacciones son muchos. Nosotros nos vamos a centrar inicialmente en la capacidad que tiene las fuerzas de provocar deformaciones.



Representar las fuerzas que actúan sobre un objeto consiste en conocer y dibujar la posición de las flechas que las simbolizan. Para dibujar una flecha sobre un objeto es suficiente si conocemos los puntos inicial (origen) y final. El punto de aplicación (origen) será siempre el centro del cuerpo sobre el que actúa.
Un objeto está sometido a la acción de dos cuerdas. Observa los elementos que componen la escena y sigue las indicaciones:
a. Hay dibujados unos ejes cartesianos sobre el objeto
b. Toma el objeto con el cursor y muévelo
c. Observa que el extremo de las fuerzas (flechas) viene determinado por un punto. Su valor lo puedes ver en la parte superior de cada eje. Toma el objeto con el cursor y muévelo sobre la escena. Comprueba cómo cambia el valor de este punto, realiza tus propias predicciones y compruébalas.

maquinas

Una máquina es cualquier artefacto capaz de aprovechar, dirigir o regular una forma de energía para aumentar la velocidad de producción de trabajo o para transformarla en otra forma energética.
La utilidad de una máquina simple (palanca, cable, plano inclinado, rueda) es que permite desplegar una fuerza mayor que la que una persona podría aplicar solamente con sus músculos, o aplicarla de forma más eficaz.
Combinando máquinas simples se construyen máquinas complejas. Con estas máquinas complejas, a su vez, se construye todo tipo de máquinas utilizadas ingeniería.
Hay que tener en cuenta que una máquina nunca puede desarrollar más trabajo que la energía que recibe y que, a igualdad de potencia, a velocidades mayores corresponden fuerzas menores, y viceversa. Una máquina simple no tiene fuen­te productora de energía en si, por lo tanto no puede trabajar a menos que se le provea de ella
Hay seis máquinas simples: la pa­lanca, el torno, la polea, el plano inclinado, el tornillo y la cuña.
Palanca.- Es una barra rígida que puede girar libre­mente alrededor de un punto de apoyo o de un eje, por la acción de dos fuerzas, la resistencia y la potencia y que se usa para mover cargas pesa­das.










Torno.- Formada por dos ruedas o cilindros concéntricos de distinto tamaño y que suele transmitir la fuerza a la carga por medio de una cuerda arrollada alrededor del cilindro mayor; en la mayoría de las aplicaciones la rueda más pequeña es el eje. El torno combina los efectos de la polea y la palanca al permitir que la fuerza aplicada sobre la cuerda o cable cambie de dirección y aumente o disminuya.
Un torno puede emplearse para levantar un objeto pesado



Tornillo.- Dispositivo mecánico de fijación, por lo general metálico, formado esencialmente por un plano inclinado enroscado alrededor de un cilindro o cono. Las crestas formadas por el plano enroscado se denominan filetes, y según el empleo que se les vaya a dar pueden tener una sección transversal cuadrada, triangular o redondeada. La distancia entre dos puntos correspondientes situados en filetes adyacentes se denomina paso. Si los filetes de la rosca están en la parte exterior de un cilindro, se denomina rosca macho o tornillo, mientras que si está en el hueco cilíndrico de una pieza se denomina rosca hembra o tuerca.




















Polea.- Dispositivo mecánico de tracción o elevación, formado por una rueda o roldana montada en un eje, con una cuerda que rodea la circunferencia de la rueda. Tanto la polea como la rueda y el eje pueden considerarse máquinas simples que constituyen casos especiales de la palanca. Una polea fija no proporciona ninguna ventaja mecánica, es decir, ninguna ganancia en la transmisión de la fuerza: sólo cambia la dirección o el sentido de la fuerza aplicada a través de la cuerda, mientras una polea móvil disminuye la mitad del peso del cuerpo














Plano Inclinado.- Es todo plano que forma con la horizontal un ángulo menor a los 90º. Mediante el plano inclinado se elevan a la altura deseada objetos que no podrían izarse directamente sin emplear fuerzas muy superiores.

martes, 18 de agosto de 2009

trigonometria



La trigonometría es una rama de la matemática es "la medición de los triángulos". la trigonometría es el estudio de las funciones seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.






Razones trigonométricas
Debido a que un triángulo tiene tres lados, se pueden establecer seis razones, dos entre cada pareja de estos lados. Las razones trigonométricas de un ángulo agudo en un triángulo rectángulo son las siguientes:




Seno: razón entre el cateto opuesto al ángulo y la hipotenusa.
Coseno: razón entre el cateto adyacente al ángulo y la hipotenusa.
Tangente: razón entre el cateto opuesto al ángulo y el cateto adyacente.
Cotangente: razón entre el cateto adyacente al ángulo y el cateto opuesto.
Secante: razón entre la hipotenusa y el cateto adyacente al ángulo.
Cosecante: razón entre la hipotenusa y el cateto opuesto al ángulo
Teorema de Pitágoras:
"En todo triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos". Y, "En todo triángulo rectángulo, el cuadrado de uno de los catetos es igual a la diferencia entre el cuadrado de la hipotenusa y el cuadrado del otro cateto".




El problema básico de la trigonometría es algo parecido a esto:
Está cerca de un ancho río y necesita conocer la distancia hasta la otra orilla, digamos hasta el árbol marcado en el dibujo por la letra C (para simplificar, ignoremos la 3ª dimensión). ¿Cómo hacerlo sin cruzar el río?


La forma habitual es como sigue. Clave dos postes en el suelo en los puntos A y B y mida con una cinta la distancia c entre ellos (la "base").




Luego extraiga el poste del punto A y sustitúyalo por un telescopio de topógrafo como el que se muestra aquí ("teodolito"), contando con una placa dividida en 360 grados, marque la dirección ("azimut") a la que apunta el telescopio. Dirigiendo el telescopio primero hacia el árbol y luego hacia el poste B, mide el ángulo A del triángulo ABC, igual a la diferencia entre los números que ha leído de la placa de azimut. Sustituya el poste, lleve el teodolito al punto B y mida de la misma forma el ángulo B .
La longitud c de la base y los dos ángulos A y B son todo lo que necesita para conocer el triángulo ABC, suficiente, por ejemplo, para construir un triángulo de la misma forma y mismo tamaño, en un sitio más conveniente. La trigonometría (de trigon = triángulo) en un principio fue el arte de calcular la información perdida mediante simple cálculo. Dada la suficiente información para definir un triángulo, la trigonometría le permite calcular el resto de las dimensiones y de ángulos.
¿Por qué triángulos? Porque son los bloques básicos de construcción para cualquier figura rectilínea que se pueda construir. El cuadrado, el pentágono u otro polígono puede dividirse en triángulos por medio de líneas rectas radiando desde un ángulo hacia los otros
.

martes, 11 de agosto de 2009

cinematica


La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo producen, limitándose esencialmente, al estudio de la trayectoria en función del tiempo.
Cinemática deriva de la palabra mover.

Movimiento rectilíneo
Se denomina movimiento rectilíneo, aquél cuya trayectoria es una línea recta.


movimiento rectilíneo.

Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Una vez situado el origen O de ángulos describimos el movimiento circular mediante las siguientes magnitudes.



La cinemática se ocupa de describir el movimiento sin tomar en cuenta sus causas. El movimiento
consiste en el cambio de posición de los objetos con el paso del tiempo y para comenzar
conviene aclarar como se especifica la posición de un objeto. Para eso hace falta referirlo a algún
otro, por ejemplo al observador. Esto requiere dar varios datos como la distancia entre observador
y objeto, en que dirección se halla éste, la orientación del objeto en el espacio, etc.